

WEC-Sim Training Course

INREL

Online Training Materials

PRESENTED BY

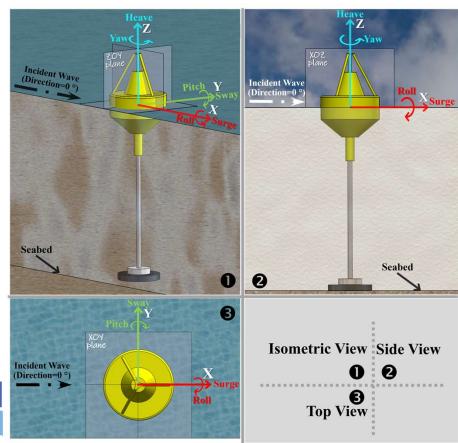
Nathan Tom, NREL

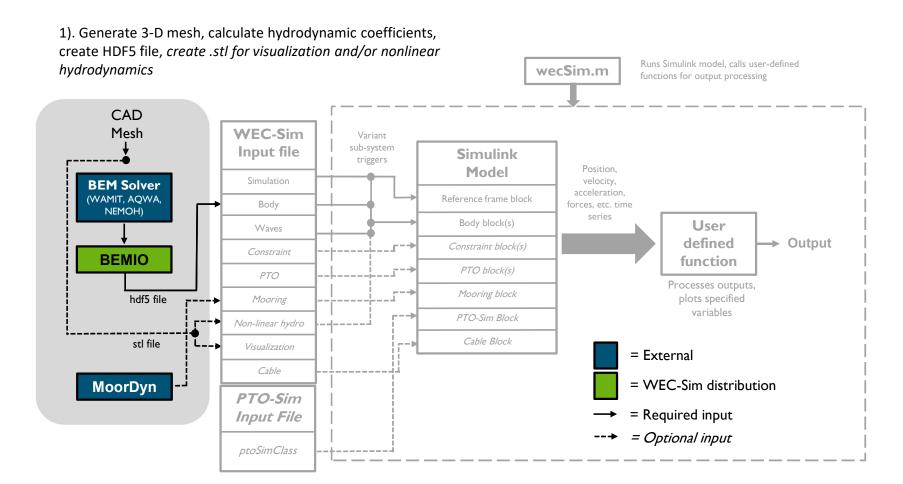
Theory & Workflow

What is WEC-Sim?

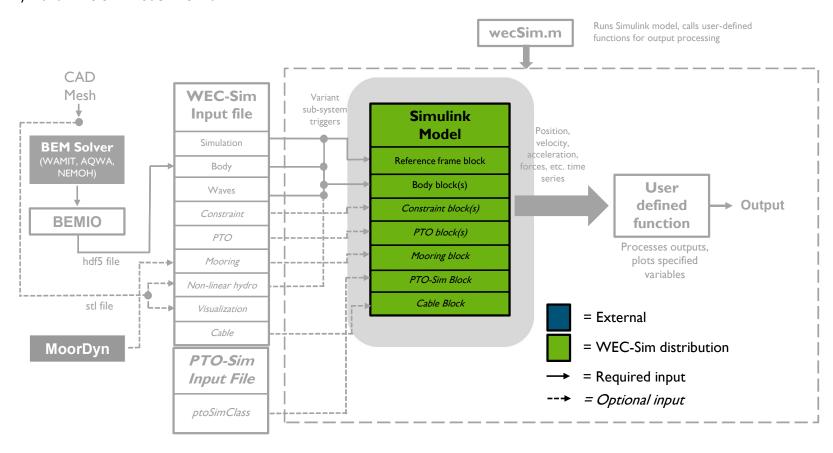
WEC-Sim (Wave Energy Converter Simulator)

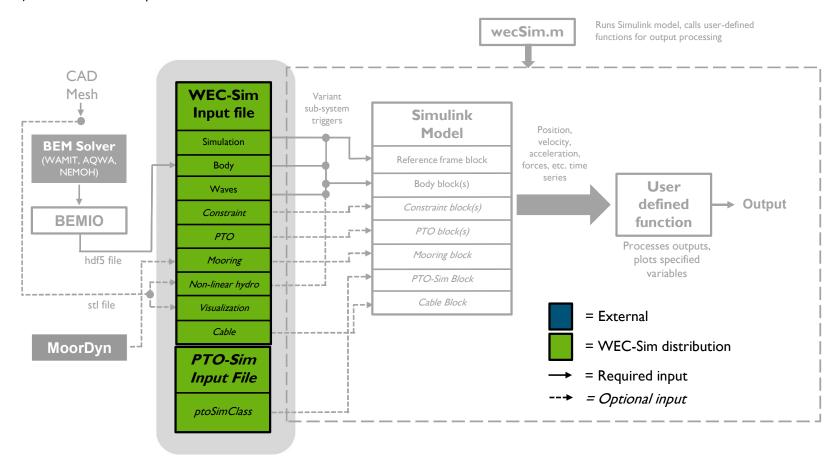
- Simulates wave energy converter dynamics in operational waves
- Time-domain rigid body equation of motion solver based on Cummins' formulation
- Open source software developed in MATLAB/SIMULINK
 - Available at https://github.com/WEC-Sim/WEC-Sim/WEC-Sim/
- Joint NREL/Sandia project funded by the US Department of Energy
- First Release: v1.0 in June 2014
- Current Release: v5.0.1 in Sept 2022

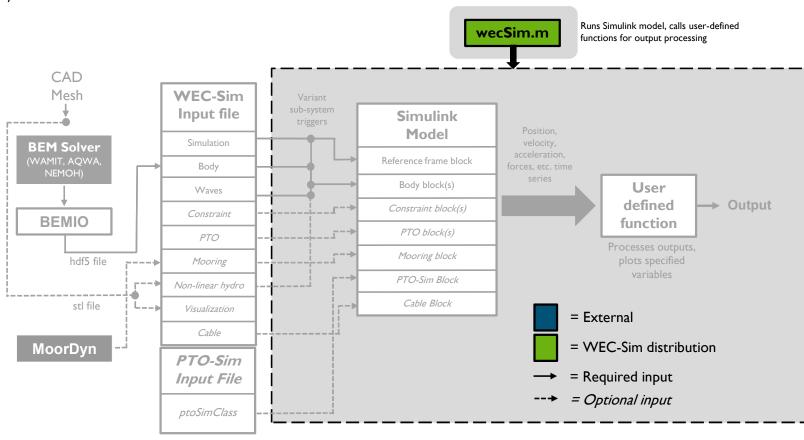


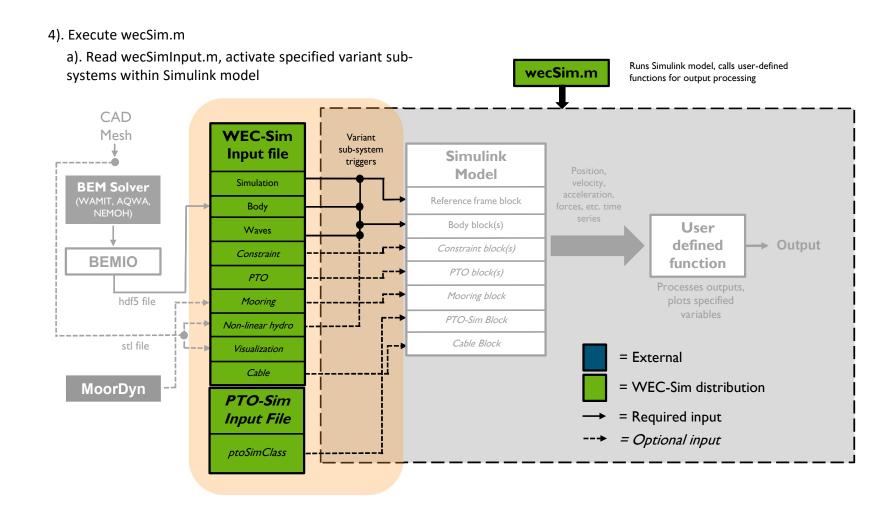

Coordinate System

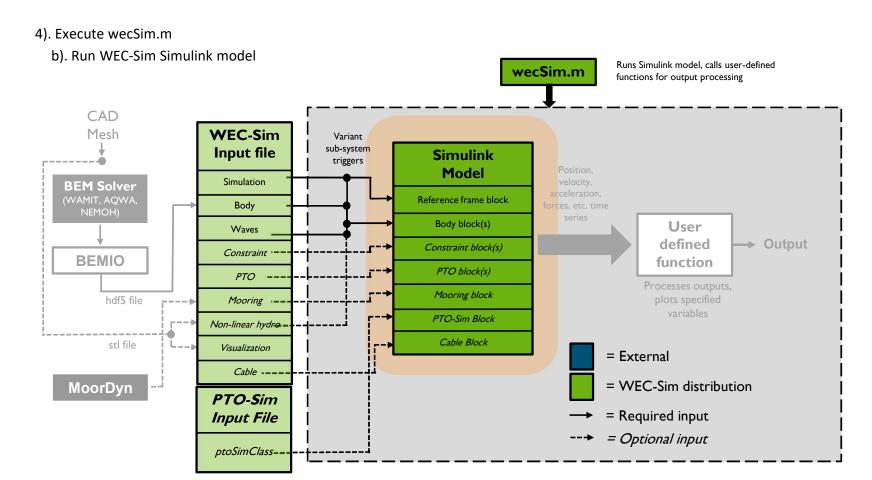
- X-Axis is in the direction of wave propagation if the wave heading angle is equal to zero (following the coordinate system definition in WAMIT).
- Z-Axis is in the vertical upwards direction from a zero at the still water level, and the Y-Axis direction is defined by the righthand rule.
- Position is described in a 6-element vector
 X. This convention is maintained for velocities, forces, etc.

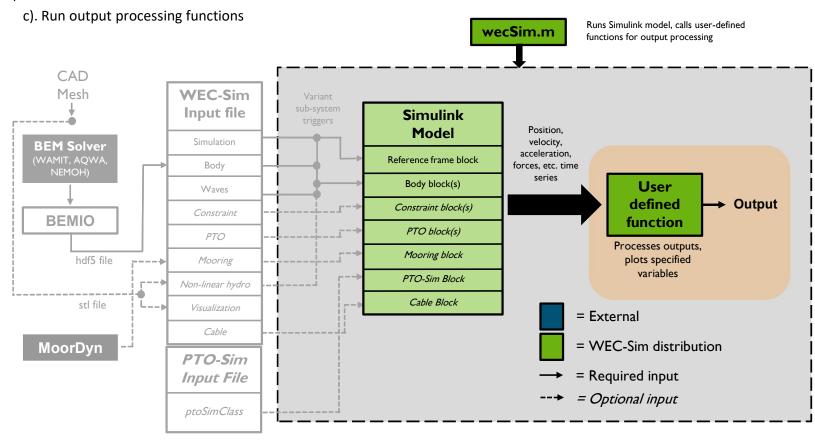

Index	1	2	3	4	5	6
Position X	x (surge)	y (sway)	z (heave)	rx (roll)	ry (pitch)	rz (yaw)

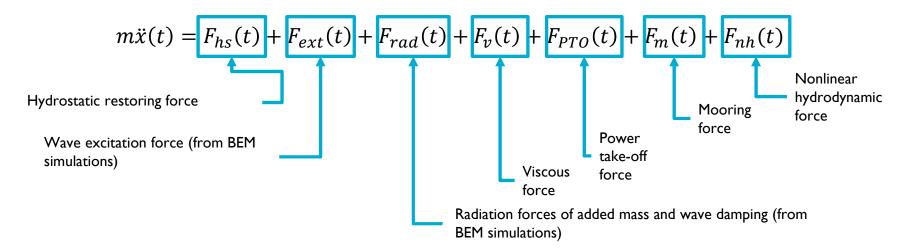



2). Build WEC-Sim model in Simulink




3). Write WEC-Sim input file


4). Execute wecSim.m



General Equations of Motion

Dynamics simulated by solving the time-domain equation of motion (Cummins, 1962)

 Excitation and radiation forces are determined from hydrodynamic coefficients calculated from Boundary Element Method (BEM)

Static Mass

$$\mathbf{m}\ddot{x}(t) = F_{hs}(t) + F_{ext}(t) + F_{rad}(t) + F_{v}(t) + F_{PTO}(t) + F_{m}(t) + F_{nh}(t)$$

- Static mass, or dry mass, is the mass (kg) (1element) and inertia (3-element)* (kg-m2) of the dry WEC body.
 - In WEC-Sim v5.0.1 there is also the option to define a 3-element product of inertia.
- Specified for each body* in the wecSimInputFile.m
 as part of the bodyClass definition
- See Training Materials Body Implementation for details
 - Usually: see Advanced Features → Body
 Features for special cases

```
body(1) = bodyClass('hydroOata/re3.h5');
body(1).geometryFile = 'seometry/float.stl';
body(1).mass = 'equilibrium';
body(1).inertia = [20907301 21306090.66 37085481.11];

**Spar/Plate*
body(2) = bodyClass('hydroOata/re3.h5');
body(2).geometryFile = 'geometry/plate.stl';
body(2).mass = 'equilibrium';
body(2).inertia = [94419614.57 94407091.24 28542224.82];
```

The definition of body mass and inertia properties in the wecSimInputFile for the RM3 example. In this special 'equilibrium' case, the mass is set equal to the mass of the displaced volume of water, defined in the *.h5 file.

Hydrostatic Forces

$$m\ddot{x}(t) = F_{hs}(t) + F_{ext}(t) + F_{rad}(t) + F_{v}(t) + F_{PTO}(t) + F_{m}(t) + F_{nh}(t)$$

 Hydrostatic restoring force is calculated as the product of a hydrostatic stiffness matrix and a vector of displacement*

$$F_{HS}(t) = K_{hs}X(t) = \begin{bmatrix} K_{1,1} & K_{1,2} & K_{1,3} & K_{1,4} & K_{1,5} & K_{1,6} \\ K_{2,1} & K_{2,2} & K_{2,3} & K_{2,4} & K_{2,5} & K_{2,6} \\ K_{3,1} & K_{3,2} & K_{3,3} & K_{3,4} & K_{3,5} & K_{3,6} \\ K_{4,1} & K_{4,2} & K_{4,3} & K_{4,4} & K_{4,5} & K_{4,6} \\ K_{5,1} & K_{5,2} & K_{5,3} & K_{5,4} & K_{5,5} & K_{5,6} \\ K_{6,1} & K_{6,2} & K_{6,3} & K_{6,4} & K_{6,5} & K_{6,6} \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \\ x_4(t) \\ x_5(t) \\ x_5(t) \\ x_6(t) \end{bmatrix} = \begin{bmatrix} F_{HS,1}(t) \\ F_{HS,2}(t) \\ F_{HS,3}(t) \\ F_{HS,5}(t) \\ F_{HS,5}(t) \\ F_{HS,6}(t) \end{bmatrix}$$

- Elements of K_{HS} are defined for each body in its *.h5 file with BEM output information, specifying the *.h5 file is all that is needed in wecSimInputFile
- *By default: see Advanced Features \rightarrow Non-linear hydrodynamics for alternative calculation method

Wave Excitation Forces

$$m\ddot{x}(t) = F_{hs}(t) + F_{ext}(t) + F_{rad}(t) + F_{v}(t) + F_{PTO}(t) + F_{m}(t) + F_{nh}(t)$$

The BEM result provides complex excitation coefficients $f_{ext}(\omega, \theta)$. For a single frequency regular wave of height H, frequency ω , direction θ , ramp function $R_f(t)$, and the real component \Re :

$$F_{ext}(t) = \Re\left[R_f(t)\frac{H}{2}f_{ext}(\omega,\theta)e^{i\omega}\right] = R_f(t)\frac{H}{2}\left[\Re\{f_{ext}(\omega,\theta)\}\cos\omega t - \Im\{f_{ext}(\omega,\theta)\}\sin\omega t\right]$$

• For j frequencies with amplitude spectral density S at phase φ :

$$F_{ext}(t) = \Re \left[R_f(t) \sum_{j=1}^N f_{ex} \left(\omega_j, \theta \right) e^{i(\omega_j t + \varphi_j)} \sqrt{2S(\omega_j) d\omega_j} \right]$$

Wave Excitation Forces

$$m\ddot{x}(t) = F_{hs}(t) + F_{ext}(t) + F_{rad}(t) + F_{v}(t) + F_{PTO}(t) + F_{m}(t) + F_{nh}(t)$$

For a wave defined as a time-series, the convolution of wave elevation η(t) and the excitation impulse response function f_e calculated from f_{ext} gives an equivalent results:

$$F_{ext}(t) = R_f \int_{-\infty}^{\infty} f_e(t - \tau) \eta(\tau) d\tau$$

- The wave excitation coefficients are read from the *.h5 file.
- \circ R_f is a ramp function that gradually increases the wave excitation from zero to the full value over a defined time period to help with simulation stability.

Radiation Forces

$$m\ddot{x}(t) = F_{hs}(t) + F_{ext}(t) + F_{rad}(t) + F_{v}(t) + F_{PTO}(t) + F_{m}(t) + F_{nh}(t)$$

- The BEM result provides complex frequency dependent radiation coefficients for added mass A and wave damping B.
- For a single frequency regular wave of height H and frequency ω :

$$F_{rad}(t) = -A(\omega)\ddot{X}(t) - B(\omega)\dot{X}(t)$$

For a wave of multiple frequencies, the infinite frequency added mass A_{∞} is used with the radiation impulse response* function K_r calculated from B:

$$F_{rad}(t) = -A_{\infty} \ddot{X} - \int_{0}^{t} K_{r}(t-\tau) \dot{X}(\tau) d\tau$$

*WEC-Sim can also approximate this integral via state-space approximation, see Theory \rightarrow Numerical Methods \rightarrow State Space

Viscous Forces

$$m\ddot{x}(t) = F_{hs}(t) + F_{ext}(t) + F_{rad}(t) + F_{v}(t) + F_{PTO}(t) + F_{m}(t) + F_{nh}(t)$$

 Linear and quadratic viscous forces are calculated from coefficients and parameters provided in the wecSimInputFile.m.

$$F_{v,quad}(t) = -\frac{1}{2} \rho A C_d \dot{X}(t) |\dot{X}(t)|$$

$$F_{v,linear}(t) = -C_v \dot{X}(t)$$

$$F_v(t) = F_{v,linear}(t) + F_{v,quad}(t)$$

```
%% Body Data
% Float
body(1) = bodyClass('hydroData/rm3.h5');
body(1).geometryFile = 'geometry/float.stl';
body(1).mass = 'equilibrium';
body(1).inertia = [20907301 21306090.66 37085481.11];
body(1).initial.angle = pi/12;
body(1).linearDamping = zeros(6);
body(1).linearDamping(3,3) = 10;
body(1).quadDrag.cd = [0 0 1.3 0 0 0];
body(1).quadDrag.area = [0 0 314.16 0 0 0];
```

The definition of linear and quadratic damping parameters for the heave mode in the wecSimInputFile.m for the RM3 example.

 *See also Advanced Features → Morison Elements for an alternative means of specifying quadratic damping and augment added mass

Power Take Off (PTO)

$$m\ddot{x}(t) = F_{hs}(t) + F_{ext}(t) + F_{rad}(t) + F_{v}(t) + F_{pro}(t) + F_{m}(t) + F_{nh}(t)$$

- Power take-off forces describe actuations between WEC bodies or WEC body and the fixed frame. If using the provided library blocks*, the PTO parameters are defined in the wecSimInputFile.m.
- $F_{PTO}(t) = -K_{PTO}X_{rel} C_{PTO}\dot{X}_{rel}$
- X_{rel} is the relative motion between the nodes connected by the PTO.
- *PTOs can be modeled in a variety of ways and can leverage the full suite of Simulink and Simscape components and control tools. See also Advanced Features → PTO-Sim

Specification of a single DOF translational PTO in the wecSimInputFile.m for the RM3 Example.

Mooring forces

$$m\ddot{x}(t) = F_{hs}(t) + F_{ext}(t) + F_{rad}(t) + F_{v}(t) + F_{PTO}(t) + F_{m}(t) + F_{nh}(t)$$

- WEC-Sim supports a linear mooring matrix and MoorDyn (see Advanced Features -> MoorDyn).
- Linear mooring matrix forces are calculated

$$F_m(t) = -K_{moor}X_{rel} - C_{moor}\dot{X}_{rel} + F_{preTension}$$

• X_{rel} is the motion of the components of the follower-side connections.

Specification of a mooring matrix in the wecSimInputFile.m

Non-linear hydrodynamic forces

$$m\ddot{x}(t) = F_{hs}(t) + F_{ext}(t) + F_{rad}(t) + F_{v}(t) + F_{PTO}(t) + F_{m}(t) + F_{nh}(t)$$

- Non-linear hydrodynamic forces include non-linear Froude-Krylov and non-linear buoyancy forces that are calculated based on panel-method integration over body geometry defined in supplemental '*.stl' files from time-resolved undisturbed wave fields and body displacements.
- *See also Advanced Features → Non-linear Hydrodynamics

Summary of equations

$$m\ddot{x}(t) = F_{hs}(t) + F_{ext}(t) + F_{rad}(t) + F_{v}(t) + F_{PTO}(t) + F_{m}(t) + F_{nh}(t)$$

Forcing Term Condition		Theory		
	Regular Waves	Sinusoidal Steady-State Response $F_{rad} = -A(\omega)\ddot{X} - B(\omega)\dot{X}$		
Radiation (F _{rad})	Irregular Waves	Cummins Equation (Convolution Integral) $F_{rad} = -A_{\infty}\ddot{X} - \int_{0}^{t} K_{r}(t-\tau)\dot{X}(\tau)d\tau$		
		State Space Representation $\dot{X}_r(t) = A_r X_r(t) + B_r u(t); \int_0^t K_r(t-\tau) u(\tau) d\tau \approx C_r X_r(t) + D_r u(t)$		
	Regular Waves	Sinusoidal Steady-State Response $F_{exc}(t) = \Re \left[R_f(t) \frac{H}{2} F_{exc}(\omega, \theta) e^{i\omega t} \right]$		
Wave Excitation (F _{ext})	Irregular Waves	Wave Spectrum (e.g., JS; BS; PM) $F_{exc}(t) = \Re \left[R_f(t) \sum_{i=1}^N F_{exc}(\omega_i, \theta) e^{i(\omega_j t + \phi_j)} \sqrt{2S(\omega_j) d\omega_j} \right]$		
		Wave Elevation (Convolution Integral) $F_{exc}(t) = \int_{-\infty}^{\infty} f_e(t-\tau)\eta(\tau)d\tau$		
		Linear Spring-Damper $P_{PTO} = C_{PTO} \dot{X}_{rel}^2$ $F_{PTO} = -K_{PTO} X_{rel} - C_{PTO} \dot{X}_{rel}$		
PTO (F _{pto})		Hydraulic PTO $P_{PTO} = -F_{PTO}\dot{X}_{rel} \qquad F_{PTO} = f\left(X_{rel}, \dot{X}_{rel}, \ddot{X}_{rel}, \ldots\right)$		
		Mechanical PTO $P_{PTO} = -F_{PTO}\Lambda_{rel}$ $P_{PTO} = J(\Lambda_{rel}, \Lambda_{rel}, \Lambda_{rel}, \dots)$		
Mooring (E.)		Linear Mooring Matrix (i.e., stiffness, damping and pretension)		
Mooring (F _m)		Lumped-Mass Mooring Dynamics Model (MoorDyn)		
		Linear & Quadratic Damping Forces $F_v = -C_v \dot{X} - C_d \rho A_d / 2 \dot{X} \dot{X} $		
Additional Added-Mass & Damping (F _v & F _{ME})		Morison Elements $F_{me} = \rho \forall \dot{v} + \rho \forall C_a (\dot{v} - \dot{X}) + C_d \rho A_d / 2 (v - \dot{X}) v - \dot{X} $		
I Nonlinear Hydrodynamic Forces (F.,) I Nonlinear Hydrodynamics i		The additional term accounts for the difference between the nonlinear and linear hydrodynamic forces (buoyancy and the Froude-Krylov force components).		

Run a WEC-Sim Simulation

- 1. Before funning: (Any Order)
 - Get a *.h5 file → Defines the hydrodynamic coefficients
 - Build a Simulink *.slx model → Describes device layout
 - Write wecSimInputFile.m → Defines dynamic parameters
- *See Advanced Features \rightarrow Non-linear hydrodynamics and MoorDyn for additional optional inputs

Run a WEC-Sim Simulation

- 1. Before funning: (Any Order)
 - Get a *.h5 file → Defines the hydrodynamic coefficients
 - Build a Simulink *.slx model → Describes device layout
 - Write wecSimInputFile.m → Defines dynamic parameters

- See also Advanced Features → BEMIO
- This BEM code will require mesh(es) to run!
- See User Manual → Workflow → Step 2

*See Advanced Features → Non-linear hydrodynamics and MoorDyn for additional optional inputs

Run a WEC-Sim Simulation

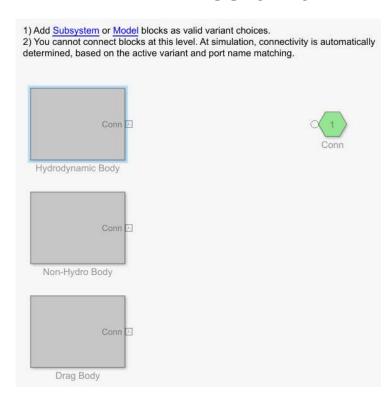
2. Run WEC-Sim

- >> wecSim or run from Simulink GUI (see Advanced Features →Running from Simulink)
- WEC-Sim will then:
- a) Clear existing variables that might conflict with those about to be loaded
- b) Run *initializeWecSim.m*

Running initializeWecSim.m

a)	Reads wecSimInputFile.m (exactly how depends on how wecSim is being called)	Line 55-78
b)	Setup all objects defined in *.slx file (e.g., constraints, ptos, moorings)	Line 88-116
c)	For each body, load nondimensional hydrodynamic coefficients	Line 150-162
d)	Setup simulation and waves, calculating wave time series	Line 219-239
e)	For each body, convert nondimensional hydro. Coeffs. to dimensional forces	Line 249-256

Running initializeWecSim.m


- f) Diagnostic checks
- g) Define variant sub-systems

A variant sub-system is Simulink block type that allows the same toplevel model to follow several different execution pathways depending on the definition of a particular variable.

A variant sub-system of the Body/Rigid Body. Depending on the specification in **bodyClass**, the correct block will be connected based on variable assignment in lines 397-402.

This ensures the same *.slx model to run without modification, different sea-states and simulation parameters.

Line 276-344 Line 346-420

Running WecSim.m

- h) After *initializeWecSim.m* finishes Run the Simulink simulation
- i) Post process
 - Collate outputs into the responseClass (default variable name = 'output')
 - Save results
 - Run userDefinedFunctions.m

*The execution pathway differs for the "Run from Simulink" options, but most function calls still originate for *initializeWecSim.m*. See Advanced Features → Running from Simulink

Notes/Warnings/Errors

- Many common errors will have informative error messages that illustrate the mistake, but not necessarily where the error enters in the wecSimInputFile.m.
- In this case, the quadratic drag vector 'body(1).quadDrag.cd' was the incorrect length.

Further Reading

- Full documentation: http://wec-sim.github.io/WEC-Sim/master/index.html
- Specifically see: http://wec-sim.github.io/WECSim/master/user/advanced_features.html#advanced-features
- The headers of class object code populate API documentation
 - https://wec-sim.github.io/WEC-Sim/master/user/api.html
- Training Slides:
 - https://wec-sim.github.io/WEC-Sim/master/user/webinars.html#online-training-course

Thank you

National Laboratorie

For more information please visit the WEC-Sim website:

http://wec-sim.github.io/WEC-Sim

If you have questions on this presentation please reach out to any of the WEC-Sim Developers on GitHub:

https://github.com/WEC-Sim/WEC-Sim

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308.

Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Water Power Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

