
PRESENTED BY

WEC-Sim Training Course

Dominic D. Forbush, Sandia

Online Training Materials

Code Structure

WEC-Sim Directory Structure

WEC-Sim source code consists of:

WEC-Sim model files* consist of:

DirectoryFile NameFile Type
$sourcewecSim.mWEC-Sim Executable

$source/objects<object>Class.mWEC-Sim MATLAB Objects

$source/lib/WEC-Sim<object>_Lib.slxWEC-Sim Simulink Library

$source/functions/simulink<functionName>.mSimulink Mask/Model
Functions

DirectoryFile NameFile Type
$<Case>wecSimInputFile.mInput File

$<Case><simulinkModelName>.slxSimulink Model

$<Case/hydroDataDir><hydroDataName>.h5Hydrodynamic Data

$<Case/geomDataDir><stlFileName>.stlGeometry File

*These are required inputs, but a number
of optional additional inputs are possible,
like custom wave spectra/ time-series.
See User Manual  Code Structure 
spectrumImport

Use of Adv. Features (e.g. PTO-Sim and
Moordyn) have additional requirements.
See Advanced Features

WEC-Sim Source Code

WEC-Sim Source Code

WEC-Sim source code consists of:

◦ Source code is included in the MATLAB path
◦ Can be executed from any directory
◦ <object>Class.m methods require the <object> to be initialized before use

DirectoryFile NameFile Type
$sourcewecSim.mWEC-Sim Executable

$source/objects<object>Class.mWEC-Sim MATLAB Objects

$source/lib/WEC-Sim<object>_Lib.slxWEC-Sim Simulink Library

$source/functions/simulink<functionName>.mSimulink Mask/Model Functions

WEC-Sim Executable

Running wecSim.m
◦ clears needed variables: this will delete unsaved outputs from previous runs
◦ Calls initializeWecSim.m, which reads wecSimInputFile.m and:

◦ performs preprocessing calculations in each of the classes
◦ selects and initializes variant subsystems in the Simulink model

◦ runs the time-domain simulation of the Simulink model

View wecSim.m and initializeWecSim.m from MATLAB Command Window
>>edit <filename>

* See Training Materials  Theory and Workflow for detailed walkthrough

WEC-Sim/source/wecSim.m

DirectoryFile NameFile Type
$sourcewecSim.mWEC-Sim Executable

$source/objects<object>Class.mWEC-Sim MATLAB Objects

$source/lib/WEC-Sim<object>_Lib.slxWEC-Sim Simulink Library

$source/functions/simulink<functionName>.mSimulink Mask/Model Functions

WEC-Sim Objects

Define classes in the wecSimInputFile.m

The following classes create the WEC-Sim objects
◦ simulationClass.m, waveClass.m, bodyClass.m,

constraintClass.m, ptoClass.m, mooringClass.m, cableClass.m

WEC-Sim objects are required to run WEC-Sim simulations
◦ simu, waves, body(i), pto(i) OR constraint(i)
◦ Additional object types can be defined if desired

View properties or open classes from MATLAB Command Window
>> doc <className>
>> open <className>

*See User ManualCode Structure  Source Detail for more

WEC-Sim/source

WEC-Sim/source/objects/

DirectoryFile NameFile Type
$sourcewecSim.mWEC-Sim Executable

$source/objects<object>Class.mWEC-Sim MATLAB Objects

$source/lib/WEC-Sim<object>_Lib.slxWEC-Sim Simulink Library

$source/functions/simulink<functionName>.mSimulink Mask/Model
Functions

WEC-Sim Library Blocks

WEC-Sim source code includes WEC-Sim library blocks:
◦ Body Elements, Constraints, Frames, Moorings, PTOs, Cables

Define WEC dynamics in WEC-Sim Simulink model using WEC-Sim Library Blocks
◦ <SimulinkModelName>.slx

View properties by double clicking on blocks, Ctrl+U to look under mask

All objects defined in the wecSimInputFile should also be blocks used in the
Simulink model.

WEC-Sim/source/lib/

WEC-Sim/source

DirectoryFile NameFile Type
$sourcewecSim.mWEC-Sim Executable

$source/objects<object>Class.mWEC-Sim MATLAB Objects

$source/lib/WEC-Sim<object>_Lib.slxWEC-Sim Simulink Library

$source/functions/simulink<functionName>.mSimulink Mask/Model
Functions

Simulink Mask/Model Functions

To facilitate version control, within the Simulink model, mask functions
and MATLAB functions reference externally-housed functions.

Name of the MATLAB function call is the same as the external function.

Only necessary to change the external function to affect model.

WEC-Sim/source/lib/
DirectoryFile NameFile Type
$sourcewecSim.mWEC-Sim Executable

$source/objects<object>Class.mWEC-Sim MATLAB Objects

$source/lib/WEC-Sim<object>_Lib.slxWEC-Sim Simulink Library

$source/functions/simulink<functionName>.mSimulink Mask/Model Functions

WEC-Sim/source/functions/simulink

Simulink Mask/Model Functions

To facilitate version control, within the Simulink model, mask functions and
MATLAB functions reference externally-housed functions.

Name of the MATLAB function call is the same as the external function.

Only necessary to change the external function to affect model.

WEC-Sim/source/lib/

DirectoryFile NameFile Type
$sourcewecSim.mWEC-Sim Executable

$source/objects<object>Class.mWEC-Sim MATLAB Objects

$source/lib/WEC-Sim<object>_Lib.slxWEC-Sim Simulink Library

$source/functions/simulink<functionName>.
m

Simulink Mask/Model
Functions

WEC-Sim/source/functions/simulink

* $/source/functions/simulink/mask functions are mostly used when
running from the Simulink GUI. See Adv. Features  Run from Simulink

WEC-Sim Model Files

WEC-Sim model files consist of:

o Model files are located in the case directory

o ***WEC-Sim models must be executed from the case directory***

WEC-Sim Model Files

DirectoryFile NameFile Type
$<Case>wecSimInputFile.mInput File

$<Case><simulinkModelName>.slxSimulink Model

$<Case/hydroDataDir><hydroDataName>.h5Hydrodynamic Data

$<Case/geomDataDir><stlFileName>.stlGeometry File

WEC-Sim/examples/RM3

An example of a WEC-Sim
case directory

WEC-Sim Input File

wecSimInputFile.m

Case Directory

o Necessary by default (see Adv. Feat.Sim. Feat.Running from Simulink)

o Located in the case directory

o Initialize and define classes in the WEC-Sim input file
– wecSimInputFile.m

o WEC-Sim objects are required to run WEC-Sim simulations
– simu, waves, body(i), pto(i) OR constraint(i)

DirectoryFile NameFile Type
$<Case>wecSimInputFile.mInput File

$<Case><simulinkModelName>.slxSimulink Model

$<Case/hydroDataDir><hydroDataName>.h5Hydrodynamic Data

$<Case/geomDataDir><stlFileName>.stlGeometry File

no (i): Only one per simulation (i): More than one OK

* Additional optional objects are also defined
in the wecSimInputFile

See User ManualCode StructureWEC-Sim Classes

WEC-Sim Input File
wecSimInputFile.m

o Initialize Constraint Class
o Set Properties of Constraint Class
o Initialize PTO Class
o Set Properties of PTO Class

o Initialize Wave Class
o Set Properties of Wave Class

o Initialize Body Class Instances
o Set Properties of Body Class Instances

* One can also define these
parameters directly from the
Simulink GUI if desired using the
“Running From Simulink” work flow.
See Adv. Features  Run from
Simulink

o Initialize Simulation Class
o Set Properties of Simulation Class

WEC-Sim Simulink File

<simulinkModelName>.slx Case Directory

o Located in the case directory
o Define model file using WEC-Sim Library Blocks

• <simulinkModelName>.slx

DirectoryFile NameFile Type
$<Case>wecSimInputFile.mInput File

$<Case><simulinkModelName>.slxSimulink Model

$<Case/hydroDataDir><hydroDataName>.h5Hydrodynamic Data

$<Case/geomDataDir><stlFileName>.stlGeometry File

WEC-Sim Simulink File

◦ Body(1) Block

o Translation PTO Block

o Body(2) Block

o Floating (3DOF) Constraint Block

o Global Reference Frame

o Body(1) Block

WEC-Sim Simulink File

◦ Body(1) Block
Alternatively, the parameters can be
specified directly in the relevant Simulink
blocks using Advanced Features 
Running from Simulink

o Translation PTO Block

o Body(2) Block

o Floating (3DOF) Constraint Block

o Global Reference Frame

WEC-Sim Objects

WEC-Sim Objects

Define classes in the wecSimInputFile.m

The following classes create the WEC-Sim objects
◦ simulationClass.m, waveClass.m, bodyClass.m,

constraintClass.m, ptoClass.m, mooringClass.m, cableClass.m

WEC-Sim objects are required to run WEC-Sim simulations
◦ simu, waves, body(i), pto(i) OR constraint(i)
◦ Additional object types can be defined if desired

View properties or open classes from MATLAB Command Window
>> doc <className>
>> open <className>

*See User ManualCode Structure  Source Detail for more

WEC-Sim/sourceWEC-Sim/source/objects/

DirectoryFile NameFile Type
$sourcewecSim.mWEC-Sim Executable

$source/objects<object>Class.mWEC-Sim MATLAB Objects

$source/lib/WEC-Sim<object>_Lib.slxWEC-Sim Simulink Library

$source/functions/Simulink<functionName>.mSimulink Mask/Model
Functions

WEC-Sim Objects

WEC-Sim has several different classes
◦ simulationClass.m
◦ waveClass.m
◦ bodyClass.m
◦ constraintClass.m
◦ ptoClass.m
◦ mooringClass.m
◦ responseClass.m
◦ cableClass.m

Each class contains:
◦ Properties that can be defined and/or calculated
◦ Methods (aka functions) that can be executed

WEC-Sim input file determines which properties are defined and methods are executed

OBJECT

PROPERTIES METHODS

INITIALIZATION OTHER

WEC-Sim Objects

Each class creates a corresponding object that will
appear in the workspace

◦ simulationClass.m simu
◦ waveClass.m waves
◦ bodyClass.m body(i)
◦ constraintClass.m constraint(i)
◦ ptoClass.m pto(i)
◦ mooringClass.m mooring(i)
◦ responseClass.m output
◦ cableClass.m cable(i)

Some properties are used to specify a variant
subsystem, e.g.

◦ simu.b2b = 1;
◦ body(i).nhBody = 1;
◦ waves = waveClass('regular');

For help, >>doc <name>Class

See also User Manual Code Structure WEC-Sim Classes

OBJECT

PROPERTIES METHODS

INITIALIZATION OTHER

WEC-Sim Class Descriptions

Simulation Class

simulationClass.m

>>simu

The simulation class contains the simulation parameters
and solver settings necessary to execute the WEC-Sim
code.

Required Properties:
◦ simMechanicsFile
◦ startTime, endTime, dt, rampTime, cicEndTime

◦ (many have default values)

* See User Manual  Code Structure  Simulation Class

and

API  Simulation Class

Wave Class
waveClass.m

>>waves

* See Training VideosWave Implementation,

User Manual  Code Structure Wave Class, and

API Wave Class

The wave class contains all wave information necessary to define the
incident wave condition for the WEC-Sim time-domain simulation. In the
Simulink model, wave forces are applied inside the body(i) blocks.

Required Properties:
◦ type
◦ Each wave ‘type’ has different required properties

Body Class

The body class contains the mass and hydrodynamic
properties of each body that comprises the WEC being
simulated.

Required Properties:
◦ mass: value, ‘equilibrium’
◦ inertia
◦ product of inertia (v5.1.0 release)
◦ geometryFile (This is used for visualization and some Adv. Feat.)
◦ h5File (This contains hydrodynamic data from BEM)

bodyClass.m

>>body

*See Training Videos  Body Class Implementation

User ManualCode Structure  Source Details Body Class

And

API  Body Class

Constraint and PTO Classes

Constraint blocks connect WEC bodies to one another (and possibly
to the seabed) by constraining DOFs. PTOs do the same and can also
apply force along their DOF of action. Unique blocks are available for
different DOF restriction (e.g., rotational, translational, spherical)

Constraint and PTO Class required properties:
◦ name
◦ location

Additional PTO Class properties that describe applied force. The length of
these fields must match the number of unconstrained DOF in the PTO.

◦ stiffness (non-negative)
◦ pretension
◦ damping

constraintClass.m ptoClass.m >>pto

>>constraint

>> pto

* For additional information, see:
User Manual  Code Structure  Constraint Class
User Manual  Code Structure  PTO Class
API  Constraint Class
API PTO Class

* For component-level PTO design, see also Adv. Features  PTO-Sim

Mooring Class

Mooring class defines the mooring system as either a
linear mooring matrix or a MoorDyn model. It is
designed to couple a WEC body, PTO, or Constraint to
the sea-bed

Mooring types:
◦ matrices
◦ MoorDyn

Properties for matrix:
◦ name
◦ location
◦ Matrix

◦ stiffness
◦ damping
◦ pretension

mooringClass.m

>>mooring

>>mooring.matrix

For additional information, see:
User Manual Code Structure Mooring Class
Advanced Features Mooring FeaturesMoorDyn
APIMooring Class

Cable Class
cableClass.m

>>cable

Cable class describes a compliant cable that connects two
constraints or PTOs. The constraint/PTO defines how the cable
connection is allowed to move. If the cable is not in tension, it
does not transmit force between the connection points.

Cable required properties:
◦ stiffness
◦ damping

By default, cable length and end locations, are determined from the
connected constraints/PTOs, assuming zero pretension.

See also: WEC-Sim Applications/Cable
Advanced Features Cable Features
User Manual  Code Structure  Cable Class

Response Class (Output Structure)

‘output’ created at the end of a WEC-Sim simulation.
It contains all the output time-series and methods to
plot and interact with the results.

output = responseClass instance
◦ Contains all time series from simulation
◦ Contains all time-series calculations
◦ Methods for quick plotting

Properties are all defined objects, each with their own
sub-fields.

This structure is created before userDefinedFunctions
runs, so userDefinedFunctions can reference output.

responseClass.m

>>output

For additional information, see:
User Manual  Code Structure  Response Class and API  Response Class

>>output.ptos(1)

WEC-Sim Library

DirectoryFile NameFile Type
$sourcewecSim.mWEC-Sim Executable

$source/objects<object>Class.mWEC-Sim MATLAB Objects

$source/lib/WEC-Sim<object>_Lib.slxWEC-Sim Simulink Library

$source/functions/simulink<functionName>.mSimulink Mask/Model
Functions

WEC-Sim Library Blocks

WEC-Sim source code includes WEC-Sim library blocks:
◦ Body Elements, Constraints, Frames, Moorings, PTOs, Cables

Define WEC dynamics in WEC-Sim Simulink model using WEC-Sim Library
Blocks

◦ <SimulinkModelName>.slx

View properties by double clicking on blocks, Ctrl+U to look under mask

All objects defined in the wecSimInputFile should also be blocks used in the
Simulink model.

WEC-Sim/source/lib/
WEC-Sim/source

https://www.mathworks.com/help/simulink/block-masks.html

WEC-Sim Library

WEC-Sim Library
◦ Drag & Drop library
◦ “Source Code” blocks

Simulink Model
◦ Made of WEC-Sim library blocks
◦ Blocks cannot have the same name:

model will automatically number
repeated block types.

WEC-Sim/source/lib/

WEC-Sim Simulink File

WEC-Sim Simulink Model
◦ Created with WEC-Sim Simulink Library Blocks
◦ Free to incorporate other Simscape/Simulink components

<simulinkModelName>.slx

Variant Subsystems

Many library blocks contain ‘Variant
Subsystems’

◦ Variant subsystems allow multiple
implementations to exist within a single model,
with one active at a time.

◦ You can programmatically swap out the active
implementation and replace it with one of the
other implementations without modifying the
model.

◦ The specification of active subsystems happens
within initializeWecSim.m.

WEC-Sim/source/lib/

https://www.mathworks.com/help/simulink/examples/variant-subsystems.html

* See Training Materials  Theory and Workflow for more information

In conclusion…

WEC-Sim Workflow36

CAD
Mesh

BEM Solver
(WAMIT, AQWA,

NEMOH,Capytaine)

BEMIO

wecSim.m

User
defined
function

hdf5 file

Runs Simulink model, calls user-defined
functions for output processing

Simulink
Model

Reference frame block

Body block(s)

Constraint block(s)

PTO block(s)

Mooring block

PTO-Sim Block

Cable Block

Output

MoorDyn

= External

= WEC-Sim
distribution
= Required input

= Optional input

stl file

Processes
outputs, plots

specified variables

Position,
velocity,

acceleration,
forces, etc. time

series

Variant
sub-system

triggers

WEC-Sim
Input file

Simulation

Body

Waves

Constraint

PTO

Mooring

Non-linear hydro

Visualization

Cable

PTO-Sim
Input File

ptoSimClass

WEC-Sim Workflow37

1). Generate 3-D mesh, calculate hydrodynamic
coefficients, create HDF5 file, create .stl for
visualization and/or nonlinear hydrodynamics

CAD
Mesh

BEM Solver
(WAMIT, AQWA,

NEMOH)

BEMIO

wecSim.m

User
defined
function

hdf5 file

Runs Simulink model, calls user-defined
functions for output processing

Simulink
Model

Reference frame block

Body block(s)

Constraint block(s)

PTO block(s)

Mooring block

PTO-Sim Block

Cable Block

Output

MoorDyn

= External

= WEC-Sim
distribution
= Required input

= Optional input

stl file

Processes
outputs, plots

specified variables

Position,
velocity,

acceleration,
forces, etc. time

series

Variant
sub-system

triggers

WEC-Sim
Input file

Simulation

Body

Waves

Constraint

PTO

Mooring

Non-linear hydro

Visualization

Cable

PTO-Sim
Input File

ptoSimClass

BEM Solver
(WAMIT, AQWA,

NEMOH,Capytaine)

WEC-Sim Workflow38

2). Build WEC-Sim model in Simulink

CAD
Mesh

BEM Solver
(WAMIT, AQWA,

NEMOH, Capytaine)

BEMIO

wecSim.m

User
defined
function

hdf5 file

Runs Simulink model, calls user-defined
functions for output processing

Simulink
Model

Reference frame block

Body block(s)

Constraint block(s)

PTO block(s)

Mooring block

PTO-Sim Block

Cable Block

Output

MoorDyn

= External

= WEC-Sim
distribution
= Required input

= Optional input

stl file

Processes
outputs, plots

specified variables

Position,
velocity,

acceleration,
forces, etc. time

series

Variant
sub-system

triggers

WEC-Sim
Input file

Simulation

Body

Waves

Constraint

PTO

Mooring

Non-linear hydro

Visualization

Cable

PTO-Sim
Input File

ptoSimClass

WEC-Sim Workflow39

3). Write WEC-Sim input file

CAD
Mesh

BEM Solver
(WAMIT, AQWA,

NEMOH, Capytaine)

BEMIO

wecSim.m

User
defined
function

hdf5 file

Runs Simulink model, calls user-defined
functions for output processing

Output

MoorDyn

= External

= WEC-Sim
distribution
= Required input

= Optional input

stl file

Processes
outputs, plots

specified variables

Position,
velocity,

acceleration,
forces, etc. time

series

Variant
sub-system

triggers

WEC-Sim
Input file

Simulation

Body

Waves

Constraint

PTO

Mooring

Non-linear hydro

Visualization

Cable

PTO-Sim
Input File

ptoSimClass

Simulink
Model

Reference frame block

Body block(s)

Constraint block(s)

PTO block(s)

Mooring block

PTO-Sim Block

Cable Block

WEC-Sim Workflow40

4). Execute wecSim.m

CAD
Mesh

BEM Solver
(WAMIT, AQWA,

NEMOH, Capytaine)

BEMIO

wecSim.m

User
defined
function

hdf5 file

Runs Simulink model, calls user-defined
functions for output processing

Output

MoorDyn

= External

= WEC-Sim
distribution
= Required input

= Optional input

stl file

Processes
outputs, plots

specified variables

Position,
velocity,

acceleration,
forces, etc. time

series

Variant
sub-system

triggers

WEC-Sim
Input file

Simulation

Body

Waves

Constraint

PTO

Mooring

Non-linear hydro

Visualization

Cable

PTO-Sim
Input File

ptoSimClass

Simulink
Model

Reference frame block

Body block(s)

Constraint block(s)

PTO block(s)

Mooring block

PTO-Sim Block

Cable Block

WEC-Sim Workflow41

4). Execute wecSim.m
a). Read wecSimInput.m, activate specified
variant sub-systems within Simulink model

CAD
Mesh

BEM Solver
(WAMIT, AQWA,

NEMOH, Capytaine)

BEMIO

wecSim.m

User
defined
function

hdf5 file

Runs Simulink model, calls user-defined
functions for output processing

Output

MoorDyn

= External

= WEC-Sim
distribution
= Required input

= Optional input

stl file

Processes
outputs, plots

specified variables

Position,
velocity,

acceleration,
forces, etc. time

series

Variant
sub-system

triggers Simulink
Model

Reference frame block

Body block(s)

Constraint block(s)

PTO block(s)

Mooring block

PTO-Sim Block

Cable Block

WEC-Sim
Input file

Simulation

Body

Waves

Constraint

PTO

Mooring

Non-linear hydro

Visualization

Cable

PTO-Sim
Input File

ptoSimClass

WEC-Sim Workflow42

4). Execute wecSim.m

CAD
Mesh

BEM Solver
(WAMIT, AQWA,

NEMOH, Capytaine)

BEMIO

wecSim.m

User
defined
function

hdf5 file

Runs Simulink model, calls user-defined
functions for output processing

Output

MoorDyn

= External

= WEC-Sim
distribution
= Required input

= Optional input

stl file

Processes
outputs, plots

specified variables

Position,
velocity,

acceleration,
forces, etc. time

series

Variant
sub-system

triggers Simulink
Model

Reference frame block

Body block(s)

Constraint block(s)

PTO block(s)

Mooring block

PTO-Sim Block

Cable Block

WEC-Sim
Input file

Simulation

Body

Waves

Constraint

PTO

Mooring

Non-linear hydro

Visualization

Cable

PTO-Sim
Input File

ptoSimClass

b). Run WEC-Sim Simulink model

WEC-Sim Workflow43

4). Execute wecSim.m
c). Run output processing functions

CAD
Mesh

BEM Solver
(WAMIT, AQWA,

NEMOH, Capytaine)

BEMIO

wecSim.m

User
defined
function

hdf5 file

Runs Simulink model, calls user-defined
functions for output processing

Output

MoorDyn

= External

= WEC-Sim
distribution
= Required input

= Optional input

stl file

Processes
outputs, plots

specified variables

Position,
velocity,

acceleration,
forces, etc. time

series

Variant
sub-system

triggers Simulink
Model

Reference frame block

Body block(s)

Constraint block(s)

PTO block(s)

Mooring block

PTO-Sim Block

Cable Block

WEC-Sim
Input file

Simulation

Body

Waves

Constraint

PTO

Mooring

Non-linear hydro

Visualization

Cable

PTO-Sim
Input File

ptoSimClass

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly
owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-
NA0003525.

This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department
of Energy (DOE) under Contract No. DE-AC36-08GO28308.

Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Water Power Technologies Office. The views
expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by
accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or
reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

Thank you
For more information please visit the WEC-Sim
website:

http://wec-sim.github.io/WEC-Sim
If you have questions on this presentation please
reach out to any of the WEC-Sim Developers on
GitHub:

https://github.com/WEC-Sim/WEC-Sim

